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Abstract
We investigate the equivalence of quantum mixed states under local unitary
transformations. For a class of rank-2 mixed states, a sufficient and
necessary condition of local equivalence is obtained by giving a complete
set of invariants under local unitary transformations, such that two states in this
class are locally equivalent if and only if all these invariants have equal values
for them.

PACS numbers: 03.67.−a, 02.20.Hj, 03.65.−w

Quantum entanglement has been extensively investigated as a key physical resource to
realize quantum information tasks such as quantum cryptography, quantum teleportation and
quantum computation [1]. Due to the fact that the properties of entanglement for multipartite
quantum systems remain invariant under local unitary transformations on the subsystems,
the entanglement can be characterized in principle by all the invariants under local unitary
transformations. For instance, the trace norms of realigned or partial transposed density
matrices in entanglement measure and separability criteria are some of these invariants [2].
Therefore, a complete set of invariants gives rise to the classification of the quantum states
under local unitary transformations. Two quantum states are locally equivalent if and only if
all these invariants have equal values for these states.

There have been many results on calculation of invariants [3, 4] related to the equivalence
of quantum states under local unitary transformations, e.g. for general two-qubit systems [5],
three-qubit states [6, 7], some generic mixed states [8–10], some classes of tripartite pure
and mixed states [11]. However, till now, we still have no operational criteria to judge the
equivalence for two general bipartite mixed states under local unitary transformations. In
this paper, we investigate the local equivalence under local unitary transformations for a class
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of rank-2 bipartite mixed quantum states in arbitrary dimensions, and present an operational
criterion.

Let H1 and H2 be m- and n-dimensional complex Hilbert spaces, with |eα〉, α = 1, . . . , m,
and |fβ〉, β = 1, . . . , n,m � n, as orthonormal bases respectively. Let ρ1 and ρ2 be two
bipartite density matrices defined on H1 ⊗ H2 with rank r(ρ1) = r(ρ2) = 2. ρ1 and ρ2 are
said to be equivalent under local unitary transformations if there exist unitary operators U1 on
H1 and U2 on H2 such that

ρ2 = (U1 ⊗ U2)ρ1(U1 ⊗ U2)
†, (1)

where † stands for transpose and conjugation.
As ρ1 and ρ2 are rank-2 density matrices, they have the following decompositions

according to their eigenvalues and eigenvectors:

ρi =
2∑

α=1

λi
α

∣∣νi
α

〉〈
νi

α

∣∣, i = 1, 2,

where λi
α and

∣∣νi
α

〉
, α = 1, 2, are the nonzero eigenvalues and eigenvectors of the density

matrix ρi respectively,
∑2

α=1 λi
α = 1.

∣∣νi
α

〉
generally has the form

∣∣νi
1

〉 =
m∑

α=1

n∑
β=1

ai
αβ |eα〉 ⊗ |fβ〉, ∣∣νi

2

〉 =
m∑

α=1

n∑
β=1

bi
αβ |eα〉 ⊗ |fβ〉,

where ai
αβ, bi

αβ ∈ C,
∑

αβ ai
αβai∗

αβ = ∑
αβ bi

αβbi∗
αβ = 1, i = 1, 2, ∗ denotes complex

conjugation.
Let Ai and Bi denote the m×n matrices with entries a

(i)
αβ and b

(i)
αβ respectively. We consider

the necessary and sufficient conditions of equivalence under local unitary transformations for
a class of rank-2 states satisfying the following conditions:

A
†
iAi = B

†
i Bi, AiA

†
i = BiB

†
i for i = 1, 2. (2)

Theorem. The density matrices ρ1 and ρ2 are equivalent under local unitary transformations
if and only if the following hold:

(i) T r
(
ρ2

1

) = T r
(
ρ2

2

)
;

(ii) T r
((

A1B
†
1

)α) = T r
((

A2B
†
2

)α)
,∀ α = 1, . . . , m;

(iii) r(A1) = r(A2), r(B1) = r(B2), r
((

B
†
1A1

)α) = r
((

B
†
2A2

)α)
,∀ α = 1, . . . , m.

Proof. It is easy to see that (i)–(iii) above hold if ρ1 and ρ2 are equivalent under local unitary
transformations, in the sense of equation (1).

We prove the converse. Two pairs of (m × n) matrices, (A,B) and (C,D), are called
contragrediently equivalent if A = SCT −1, B = T DS−1 for some invertible matrices S and
T. It is shown in [12] that the pairs (A,B) and (C,D) are contragrediently equivalent if and
only if AB is similar to CD and r(A) = r(C), r(B) = r(D), r(BA)α = r(DC)α, r(AB)α =
r(CD)α for all α = 1, . . . , m.

Therefore from conditions (ii) and (iii), we have that the pairs
(
A1, B

†
1

)
and

(
A2, B

†
2

)
are

contragrediently equivalent and there are invertible (but not necessarily unitary) matrices S
and T such that

SA2 = A1T , T B−1
2 = B−1

1 S. (3)
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Equation (3) can be rewritten as(
0 T

S 0

) (
0 A2

B
†
2 0

)
=

(
0 B

†
1

A1 0

)(
0 T

S 0

)
.

By assumption (2), the matrices W1 := (0 A2

B
†
2 0

)
and W2 := (0 B

†
1

A1 0

)
are normal.

If two normal matrices M,N and an invertible matrix X satisfy XMX−1 = N , then one
has UXMU

†
X = N , where X = UX|X| is the polar decomposition of X and UX is unitary [13].

Therefore from the observation that the unitary part of the polar decomposition in
(0 S

T 0

)
is

nothing but
(0 US

UT 0

)
, we have

(
0 UT

US 0

) (
0 A2

B
†
2 0

)
=

(
0 B

†
1

A1 0

) (
0 UT

US 0

)
,

which is equivalent to

A2 = U
†
SA1UT , B2 = U

†
SB1UT .

Here, US and UT are unitary (as S, T are invertible). Condition (i) and T r(ρ1) = T r(ρ2) = 1
together imply that the density matrices ρ1 and ρ2 have the same eigenvalues. Therefore
ρ2 = (U1 ⊗ U2)ρ1(U1 ⊗ U2)

†, where U1 = U
†
S, U2 = (UT )t (t denoting the transpose). �

The theorem gives a sufficient and necessary condition for local equivalence of two rank-2
mixed states satisfying (2). The class of quantum states satisfying (2) is not trivial. As a simple
example, we consider the two-qubit systems. In this case, A and B are 2 × 2 matrices. It is
easily verified that the following matrices satisfy the required conditions:

A(θ) = 1√
2

(
cos θ sin θ

−sin θ cos θ

)
, B(γ ) = 1√

2

(
cos γ sin γ

sin γ −cos γ

)
.

Hence the rank-2 density matrix ρ = λ|ψ〉〈ψ | + (1 − λ)|φ〉〈φ|, where |ψ〉 =∑2
α,β=1 aαβ(θ)|eα〉 ⊗ |fβ〉, |φ〉 = ∑2

α,β=1 bαβ(γ )|eα〉 ⊗ |fβ〉, belongs to the class we are
concerned with. From the theorem we have that ρ and ρ ′ = λ|ψ ′〉〈ψ ′| + (1 − λ)|φ′〉〈φ′| with
|ψ ′〉 = ∑2

α,β=1 aαβ(θ ′)|eα〉 ⊗ |fβ〉, |φ′〉 = ∑2
α,β=1 bαβ(γ ′)|eα〉 ⊗ |fβ〉 are equivalent under

local unitary transformations.
Here, the concurrence C(|ψ〉) = C(|φ〉) = 1. Both pure states |ψ〉 and |φ〉 are maximally

entangled. In the special case θ = 0 (respectively γ = 0), |ψ〉 (respectively |φ〉) is reduced to
one of the Bell bases |ψ〉 = (|00〉 + |11〉)/√2 (respectively |φ〉 = (|00〉 − |11〉)/√2). These
states are equivalent under local unitary transformations. Nevertheless, generally ρ and ρ ′ are
not equivalent under local unitary transformations even if |ψ〉 (respectively |φ〉) is equivalent
to |ψ ′〉 (respectively |φ′〉) under local unitary transformations, unless the same local unitary
transformations transform |ψ〉 to |ψ ′〉 and |φ〉 to |φ′〉 simultaneously.

Generally a rank-2 state can be written as ρ = λ|ν1〉〈ν1| + (1 − λ)|ν2〉〈ν2|, 0 < λ < 1.
The normalized vectors |ν1〉 and |ν2〉 are given by the m × n matrices (A)αβ = aαβ and
(B)αβ = bαβ , respectively, |ν1〉 = ∑

αβ aαβ |eα〉 ⊗ |fβ〉, |ν2〉 = ∑
αβ bαβ |eα〉 ⊗ |fβ〉, with

T r(AA†) = T r(BB†) = 1 due to normalization. Let us consider the general forms of a pair
of matrices A and B such that the conditions A†A = BB† and AA† = BB† are satisfied.

Since A†A = B†B, we can write down singular value decomposition of A and B as
follows:

A = U
V †, B = U ′
V ′†,

where U,U ′ and V, V ′ are unitary matrices and 
 is a diagonal matrix with non-negative
entries. Furthermore, the condition A†A = B†B implies V ′†V 
2 = 
2V ′†V . Thus, V ′†V
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commutes with 
. Similarly from AA† = BB†, we conclude that U ′†U also commutes with

. Hence, we have

B = U ′
V ′† = UU †U ′
V ′†V V † = U�
V †, (4)

where � = (U ′†U)†V ′†V is unitary and commutes with 
. Therefore, the pair (A,B) can be
transformed into the pair (
, �
). We call (
, �
) the canonical form of the pair (A,B).
If the diagonal matrix 
 is of the form diag(d1, . . . , d1, d2, . . . , d2, . . . , dk, . . . , dk), where di

is repeated with multiplicity mi , then � must have the block diagonal form diag(�1, . . . , �k),
where �i, i = 1, . . . , k, are mi × mi unitary matrices.

In fact, if we have another pair of matrices A′ and B ′, associated with the eigenvectors
|ν ′

1〉 and |ν ′
2〉 of another rank-2 density matrix in the class considered, with the canonical form

(
′, �′
′), then |ν ′
1〉, |ν ′

2〉 and |ν1〉, |ν2〉 are equivalent under local unitary transformations if
and only if 
 = 
′ and wi�iw

†
i = �′

i for some unitary matrix wi, i = 1, . . . , k.
Therefore under the local unitary transformation ρ → (U ⊗ V ∗)ρ(U ⊗ V ∗)†, a rank-2

mixed state in our class has the standard form: ρ = λ|µ1〉〈µ1| + (1 − λ)|µ2〉〈µ2|, where
|µ1〉 = ∑

α dα|eα〉 ⊗ |fα〉 and |µ2〉 = ∑
αβ(�
)αβ |eα〉 ⊗ |fβ〉. In particular, if all the

singular values are distinct, then two such density matrices are equivalent under local unitary
transformation if and only if they have exactly the same standard form.

We have investigated the equivalence under local unitary transformations for a class of
rank-2 bipartite mixed quantum states. A complete set of invariants has been presented such
that any two of these states are locally equivalent if and only if all these invariants have equal
values for these related density matrices.

Our method can be applied to another classification of quantum states, defined by
local operations and classical communication (LOCC). Two states have the same kind of
entanglement if they can be obtained from each other by LOCC with nonzero probability [14].
There have been many results for bipartite and multipartite pure states for their equivalence
under SLOCC [15–17]. In [15] Dür et al showed that for pure three-qubit states there are
six different classes of entanglement under SLOCC. Verstraete et al [16] considered the
entanglement of a four-qubit case under SLOCC and concluded that there exist nine families
of states corresponding to nine different ways of entanglement. Nevertheless, for mixed states
few are known yet.

Corresponding to pure states, we say that ρ1 and ρ2 are equivalent under SLOCC if there
exist invertible (but not necessarily unitary) matrices P and Q such that

ρ2 = (P ⊗ Q)ρ1(P ⊗ Q)†. (5)

Proposition. The density matrices ρ1 and ρ2, with B1 and B2 nonsingular, are equivalent
under SLOCC if the following hold:

(i) T r
(
ρ2

1

) = T r
(
ρ2

2

)
;

(ii) T r
((

A1B
−1
1

)α) = T r
((

A2B
−1
2

)α)
,∀ α = 1, . . . , m;

(iii) r(A1) = r(A2), r(B1) = r(B2), r
((

B−1
1 A1

)α) = r
((

B−1
2 A2

)α)
,∀ α = 1, . . . , m.

Proof. From conditions (ii) and (iii), we have that the pairs
(
A1, B

−1
1

)
and

(
A2, B

−1
2

)
are

contragrediently equivalent. Hence, there are invertible (but not necessarily unitary) matrices
S and T such that SA2 = A1T , T B−1

2 = B−1
1 S.

That is, we have A2 = S−1A1T ,B2 = S−1B1T . Accounting to condition (i) which
implies that the density matrices ρ1 and ρ2 have the same eigenvalues, the above relations give
rise to the equivalence of ρ1 and ρ2 under SLOCC. �
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The classification of quantum states under local operations is of significance in quantum
information processing. We have presented some criteria for the equivalence of some bipartite
mixed states in arbitrary dimensions. Our results can be generalized to the case of multipartite
states by considering bipartite decompositions. In terms of the method used in [11], our
equivalence criteria for bipartite mixed states can also be used to study the equivalence of
tripartite pure states.
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